PARKING AND LOADING DESIGN SUPPLEMENT

As part of the Engineering Department's review of Development Permit Applications, the Parking Branch examines DE drawings to ensure that parking and loading bay designs meet City standards. Often, omissions or errors on drawings occur because designers may not be aware of specific standards. As a supplement to the information contained in the Parking By-law, the following has been compiled to assist in the drafting of plans and to avoid confusion and delay. In conjunction with these guidelines, good engineering practices are to be followed in all circumstances to ensure public safety.

I. RAMP DESIGN

A. Ramp Grades (Except in RS and RT Zoning)

The maximum ramp slope allowed in the first 6.1m (20') from the property line is 10%. The maximum slope after the first 6.1m from the property line is 12.5%. On extreme hardship sites, slopes up to 15% may be acceptable if a 7.5% to 10% transition ramp or continuous transition curve is provided at the bottom for at least 4m (13') in length. Ramps which have a 15% slope and are exposed to the weather must be heated.

Please note that the percent of slope, the length of the ramp at the specified slope, and design elevations on both sides of the ramp at all break points (plus along the centre of travel lanes in curves) must be shown on the submitted drawings.

B. Ramp Widths (Except in RS and RT Zoning)

<table>
<thead>
<tr>
<th>To/From</th>
<th>No. of Parking Spaces</th>
<th>Minimum Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Residential Street or Lane 19 or fewer</td>
<td>3.6 m (12')</td>
<td></td>
</tr>
<tr>
<td>A Residential Street or Lane 20 or more</td>
<td>6.1 m (20')</td>
<td></td>
</tr>
<tr>
<td>An Arterial Street 9 or fewer</td>
<td>3.6 m (12')</td>
<td></td>
</tr>
<tr>
<td>An Arterial Street 10 or more</td>
<td>6.1 m (20')</td>
<td></td>
</tr>
</tbody>
</table>

Where views to pedestrians would otherwise be obstructed, diagonal corner cuts or view portals are required. View portals at the top or bottom of ramps within underground parking areas may also be required to provide improved visibility of oncoming vehicles.

February 12, 2002
Corner cuts are required at the top and bottom of ramps to provide adequate radii for continuous two-way traffic flow where 200 or more vehicles are being served. A standard 6m (20') ramp width would require a 2.7m x 2.7m (9' x 9') corner cut. Reduced corner cuts would be acceptable for wider ramps upon review.

C. Convex Mirrors on Ramps

Convex mirrors are required at those locations, such as 90 degree jogs in access ramps, where opposing motorists cannot readily view each other. The condition normally applies to a ramp which is too narrow to permit vehicles to bypass each other.

D. Security Door Controls

If a key lock or similar security system is to be used on a driveway designed for two-way movement, the activation unit must be placed in the middle of the ramp, and the ramp should be at least 6.7m (22') wide. Where a driveway with two-way movement is of lesser width, the overhead security door shall be activated by a remote control unit in the vehicle. This should be noted on submitted drawings. Where the driveway is accessed from a street, as opposed to a lane, the security door (and activation unit, if applicable) shall be positioned such that a vehicle is off the City street when stopped to activate the door.

II. PARKING AREA

A. Parking Space Size

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>2.5 m x 5.5 m (8'2" x 18')</td>
<td></td>
</tr>
<tr>
<td>Small car</td>
<td>2.3 m x 4.6 m (7'6" x 15'1")</td>
<td></td>
</tr>
<tr>
<td>Disability</td>
<td>4.0 m x 5.5 m (13'1½" x 18')</td>
<td>* 2.3m (7' 6½") minimum height required</td>
</tr>
</tbody>
</table>

Note 1: If a parking stall is adjacent to a wall, or if a column is located more than 1.2m (4') from either end of the stall, then the required stall width is 2.7m (8' 10") for a standard vehicle, and 2.6m (8' 6") for a small car.

Note 2: If column encroachments are proposed, the following minimum standards must be satisfied (see Appendix A):

a) A 3-car module requires a minimum width of 7.5m (24' 6") with a maximum of 0.15m (6") column encroachment. Note: this restricts columns to a maximum 0.3m (1") width centred on the stall dividing line.
b) Any column encroachment on a 2.5m (8' 2") wide parking stall must be set back from the manoeuvring aisle, yet respect the 1.2m (4') maximum limit from the end of the stall. For example, if the column depth is 0.6m (2') long, then it must be set back 0.6m (2') from a standard 6.6m (21'8") manoeuvring aisle. However, if a proposed manoeuvring aisle exceeds the 6.6m minimum, the column need not be set back as far. For example, the minimum required column setback from a 6.9m (22' 8") manoeuvring aisle is 0.3m (1') and from a 7.2m (23' 8") manoeuvring aisle is nil. Should a column 0.9m (3') long be required, then it must be set back 0.3m (1'), but a standard width manoeuvring aisle is acceptable.

c) No column encroachments will be accepted for single stall modules having columns on both sides of the stall. Furthermore, although there are no column encroachments, submissions as per this example will still require columns to be set back as per (b).

d) Column encroachments up to 0.15m (6") on small car stalls are also acceptable provided the required setbacks as noted in (b) above are met.

Note 3: a) If disability spaces are located beside one another, or beside a walkway or open area, the stall width must be a minimum of 2.5m (8'2") with a 1.5m (5') wide wheelchair access corridor (see Appendix A).

b) Each required disability space can count as two standard parking spaces toward meeting minimum total required parking.

B. Projections Over a Stall

Projections over a stall normally occur with shallow sites which require an overlapping split-level design for the parking structure. If projections are unavoidable due to site constraints, they should meet the following design criteria. Vertical clearance must not be less than 1.2m (4') and projection into the stall from the wall must not be more than 1.2m (4'). The corner of such projection is to be chamfered at 45 degrees for a minimum of 10 cm (4 in.) and the vertical face of at least every other stall marked "CAUTION - LOW CLEARANCE" in minimum 10cm (4 in.) high black letters on a yellow background.
C. **Manoeuvring Aisle Width**

Generally where the parking stall is aligned at a 90-degree angle to the wall, a 6.6m (21'8") wide manoeuvring aisle is required. The manoeuvring aisle width may be reduced for small car stalls, or if the angle of parking is less than 90 degrees upon review by Engineering staff. In cases where provision of parking is difficult, a limited reduction of the manoeuvring aisle width for 90-degree stalls may be permitted to an absolute minimum of 6.1m (20') provided that the minimum width of the parking stall accessed is greater than standard (see Appendix A). No widening is required for small car spaces, however.

Note: Manoeuvring aisles are, in effect, a hammerhead access to and from parking spaces. Except for some entrances and the dead-end portion of a parking layout, the effective manoeuvring aisle width on either side of a parking space is not to be restricted by elevator cores, stairwells, or other obstructions.

SEE ATTACHED GUIDELINES FOR ADDITIONAL DIMENSION REQUIREMENTS FOR PARKING AREAS (APPENDIX A)

D. **Access, Circulation and Parking Layout**

Because of the complexity of factors entering into the determination of the location of points of access to a site, applicants should discuss this aspect of a development at an early date with Engineering staff. The following items should be considered for circulation:

- Right hand drive should be maintained onto, on, and from the site, except that where access is taken from the left side of a one-way street, a left hand drive entrance/exit ramp may be suitable.
- Design of on-site circulation should be logical and efficient.
- Circuitous routings to obscure parking or loading areas should be avoided.
- Parking must be laid out such that it does not require a vehicle to back up for more than 10m (33').
- Parking layouts must be such that vehicles exit the parking area in a forward direction, except where the lane serves as the manoeuvring aisle or in RS and RT zoning.
- In those cases where a parking stall requires that a vehicle effect a 180 degree turn, adequate area must be provided so this may be accomplished without undue difficulty.
- Interior access, circulation, and manoeuvring areas serving any disabled parking space must also provide minimum 2.3m (7'6½") vertical clearance.
- In residential parking facilities visitor spaces should be clearly marked on submitted plans and located outside a security gate separating them from parking for residents’ vehicles. (See IV.D)
The following items should be considered in the parking layout:

- In parking structures, the location of transient parking should be convenient to the ground level.
- Each parking stall must be numbered on the drawings so that it may be uniquely identified by reviewing staff.
- All small car stalls must be clearly marked on submitted plans and the small car ratio noted. See the Parking By-law, Section 4.1.7 regarding the permitted proportions of small cars.
- The normally allowable maximum slope or crossfall is 5%, applicable to both the parking stalls and access aisles.

E. **Ticket Spitters**

Ticket spitters with automatic gates normally must be located not less than 15m (50') inside the property line measured along the driveway centreline. At entrances where an attendant controls entry and exit, the booth normally must be located not less than 30m (100') from the property line measured along the driveway centreline. If the attendant only controls the exit lane, then the 15m distance will apply.

III. **LOADING AND PASSENGER SPACES**

A. **Loading Space Standards**

The Class A loading space allows for provision of spaces sized to serve vans or pick-up trucks. Dimensions are a minimum 2.7m x 5.5m (9' x 18'), with a vertical clearance of 2.3m (7'6½’). Interior access, circulation, and manoeuvring areas serving any Class A loading must also provide minimum 2.3m vertical clearance.

The traditional (now Class B) loading space is 3.0m x 8.5m (10' x 28'). On narrow lots, 7.6m to 10m (25' to 33') in width, a reduction in loading bay width to 2.7m (9') may be acceptable depending on site constraints and the vehicles to be served. Where loading access from an arterial street is proposed on a conditional site, or in a rezoning, additional interior vertical clearance may be required. Provision of access at the end of a loading space is required in the form of a loading dock, an overhead door, or an access corridor leading to an entry door. For smaller developments on narrow lots, an entry door at the end of a loading space is normally sufficient. For throat width requirements and width of second or subsequent loading spaces, see Appendix A, attached.

The maximum slope or cross fall normally permitted in a loading space or access aisle is 5%.
B. **Passenger Space Standards**

A Class A passenger space (passenger vehicle) is 4.0m x 5.5m (13'1½" x 18') with a vertical clearance of 2.3m (76½").

The first required Class B passenger space (custom transit vehicle or HandyDart) is 4.0m x 7.5m (13' 1½" x 24'7") with a vertical clearance of 3.5m (11'6"). Any additional space can have a reduced length of 6.0m (19'8"). All Class B spaces shall have a 4.0m x 3.0m (13'1½" x 10') landing area extending beyond the head of the space. For throat width requirements and landing area illustration, see Appendix A.

Dimensions for a Class C passenger space (tour bus) are described in section 7.5 of the Parking By-law.

Note: A housekeeping amendment to the Parking By-Law is in progress to increase the width and height of all Class A passenger spaces, and the width of Class B passenger spaces to coincide with the recently amended (increased) dimensions of disability spaces. The increased dimensions are presented above.

IV. **OTHER CONSIDERATIONS**

A. **Motorcycles**

A stall designated for the parking of a motorcycle shall be a minimum of 1.5m (5') wide and 2.4m (8') long and clearly marked "Motorcycle Parking".

Note: Motorcycle stalls do not count toward parking spaces required under the Parking By-law.

B. **Bicycles**

Bicycle space regulations are set out in Section 6 of the Parking By-law.

C. **Payment-in-Lieu Relief**

A payment-in-lieu of the applicant’s requirement to provide a certain number of off-street parking spaces may be applied for if the property is within the boundaries shown in the attached drawing (see Appendix B). Recommendation of approval would depend on a number of factors, including difficulty of on-site or off-site provision, traffic and pedestrian concerns, economics, streetscape preservation, etc. Payment-in-lieu is only available for commercial and industrial use and not for residential use (except for heritage preservation) at this time.
This is a two-stage process requiring initial City Council approval in principal for the payment-in-lieu of parking. Following this approval in principal, all monies must be paid to the City. A by-law is then drafted for Council approval. No Development Permit maybe issued prior to the completion of this process. The process is undergoing a review for streamlining.

D. **Visitor Parking, Residential**

Though residential visitor parking is generally not a distinct by-law requirement, these spaces are required to serve the demand, and constitute a component of the parking standard. This component ranges from 0.1 to 0.2 space per dwelling unit, but may be reduced in certain circumstances. Flexibility is important to allow for proper circulation and suitable location of security grills separating visitor spaces from those used for residents’ vehicles.

If you have any questions on the above information, or require any other information concerning parking or loading bay design standards, please contact the Parking Branch at 873-7217.

original signed by:

Ian Adam, P. Eng.
Assistant City Engineer
Transportation Division
NOTE:
Parallel parking stalls shall be 2.5 m x 6.4 m with 3.6 m aisle width

PARKINGSTALL LAYOUT
(1) SELECT
W = parking stall width
L = parking stall length
a = parking angle (degrees)

(2) LOOKUP TABLES:
D = depth of parking stalls
AW = required minimum aisle width

(3) ADDITIONAL LAYOUT INFORMATION
X1 = space between stalls = W/sin(a)
X2 = Lcos(a)
X3 = Wsin(a)

*These increased widths may be required (see section II. PARKING AREA A. Note1:)

AW

D

L

W

X1

X2

X3

NOTE:
Parallel parking stalls shall be 2.5 m x 6.4 m with 3.6 m aisle width

PARKINGSTALL LAYOUT
(1) SELECT
W = parking stall width
L = parking stall length
a = parking angle (degrees)

(2) LOOKUP TABLES:
D = depth of parking stalls
AW = required minimum aisle width

(3) ADDITIONAL LAYOUT INFORMATION
X1 = space between stalls = W/sin(a)
X2 = Lcos(a)
X3 = Wsin(a)
Aisle width (AW) may be decreased to a minimum of 6.1 m (20 ft) by increasing stall widths above the minimum requirement. Decreased aisle width can be determined by taking the aisle width for a given minimum stall width and applying to it the factor listed below in the second column. The factor that may be used depends on the size of the increased stall width as listed below in the first column. This six columns on the right are examples of decreased aisle widths that can be obtained using these factors.

Values for Decreasing Aisle Widths

<table>
<thead>
<tr>
<th>Stall Width</th>
<th>Factor</th>
<th>90 degrees</th>
<th>80 degrees</th>
<th>70 degrees</th>
<th>60 degrees</th>
<th>50 degrees</th>
<th>45 degrees (or less)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.30-2.54**</td>
<td>1.00</td>
<td>6.60</td>
<td>5.80</td>
<td>5.10</td>
<td>4.50</td>
<td>3.90</td>
<td>3.60</td>
</tr>
<tr>
<td>2.55-2.59</td>
<td>.985</td>
<td>6.50</td>
<td>5.71</td>
<td>5.02</td>
<td>4.43</td>
<td>3.84</td>
<td>3.55</td>
</tr>
<tr>
<td>2.60-2.64</td>
<td>.970</td>
<td>6.40</td>
<td>5.63</td>
<td>4.95</td>
<td>4.37</td>
<td>3.78</td>
<td>3.49</td>
</tr>
<tr>
<td>2.65-2.69</td>
<td>.955</td>
<td>6.30</td>
<td>5.54</td>
<td>4.87</td>
<td>4.30</td>
<td>3.72</td>
<td>3.44</td>
</tr>
<tr>
<td>2.70-2.74</td>
<td>.939</td>
<td>6.20</td>
<td>5.45</td>
<td>4.79</td>
<td>4.23</td>
<td>3.66</td>
<td>3.38</td>
</tr>
<tr>
<td>2.75+</td>
<td>.924</td>
<td>6.10</td>
<td>5.34</td>
<td>4.71</td>
<td>4.16</td>
<td>3.60</td>
<td>3.35</td>
</tr>
</tbody>
</table>

* up to 2.54 m considered to be no increase above minimum stall width.
** minimum aisle width for minimum stall width (2.54 m or less)

Column Encroachment Requirements

Diagram showing examples of various minimum aisle widths applied to factors.
D/Disability Spaces (all dimensions in metres)

Independent (Standard)

4.0 4.0 4.0
5.5

Shared (Acceptable)

4.0
2.5
4.0
1.5

E/Loading Space (Class B) and Passenger Space (Class B) (all dimensions in metres)

Loading Space, Class B

AW
TW
68°

8.5
3.0
3.0

Passenger Space, Class B

AW
TW
68°

7.5
3.0
4.0

LANDING AREA

Class B Loading Space Table

<table>
<thead>
<tr>
<th>Aisle Width (AW)</th>
<th>Throat Width (TW)</th>
<th>Additional Bay Width (AB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>4.6</td>
<td>3.8</td>
</tr>
<tr>
<td>6.4</td>
<td>4.4</td>
<td>3.7</td>
</tr>
<tr>
<td>6.7</td>
<td>4.1</td>
<td>3.5</td>
</tr>
<tr>
<td>7.0</td>
<td>4.0</td>
<td>3.4</td>
</tr>
<tr>
<td>7.3</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>7.6</td>
<td>3.7</td>
<td>3.0</td>
</tr>
<tr>
<td>7.9</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>8.2</td>
<td>3.3</td>
<td>3.0</td>
</tr>
<tr>
<td>8.5</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Passenger Space Table*

<table>
<thead>
<tr>
<th>Aisle Width (AW)</th>
<th>Throat Width (TW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>4.6</td>
</tr>
<tr>
<td>6.4</td>
<td>4.4</td>
</tr>
<tr>
<td>6.7</td>
<td>4.1</td>
</tr>
<tr>
<td>7.0</td>
<td>4.0</td>
</tr>
<tr>
<td>7.3</td>
<td>4.0</td>
</tr>
<tr>
<td>7.6</td>
<td>4.0</td>
</tr>
</tbody>
</table>

*See Section II.B regarding length for Class B spaces subsequent to first one required.